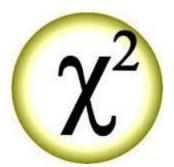
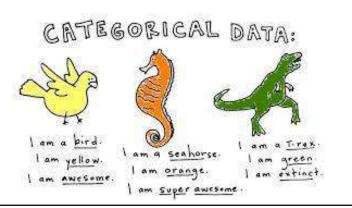
Relationships between Two Categorical Variables: Chi-Square Test



Both Variables Are Nominal

- If both variables are nominal/categorical → Chi-square test of independence
- Independence = no relationship



Cross-tabulation (crosstab) or Contingency Table

		Variable 1 Category 2	Variable 1 Category 3
Variable 2 Category 1	n1	n3	n5
Variable 2 Category 2	n2	n4	n6

Example

We want to know whether gun ownership is related to one's marital status. We collect data from a random sample of 150 people; each person reports their marital status and whether they have a gun. Can we conclude that the rates of gun ownership depend on marital status in the population?

Data:

- never married with a gun = 15 people
- previously married with a gun = 15 people
- married with a gun=30 people
- never married no gun = 45 people
- previously married no gun = 30 people
- married no gun = 15 people

Organizing the Data: Step 1

- Decide on the dependent and independent variable: marital status → gun ownership? or gun ownership → marital status?
- "Independent" variable (marital status =columns of the table; "dependent" variable (gun ownership) = rows

Organizing the Data: Step 2

Make a table: C1, C2, C3 are the three values of the "independent" variable (marital status), they form the columns of the table; R1, and R2 are the two values of the "dependent" variable (gun ownership), they form the rows of the table

	C1: Never married	C2: Previously married	C3: Married
R1: Gun	R1C1: 15	R1C2: 15	R1C3: 30
R2: No	R2C1: 45	R2C2: 30	R2C3: 15

Organizing the Data: Step 3

- Add row totals(R_t), column totals (C_t), and column percentages
- The N for this table (which we label T, for "total") is 150

	Never married	Previously married	Married	Row Totals
Gun	15	15	30	60
	25%	33.33%	66.67%	40%
No gun	45	30	15	90
	75%	66.67%	33.33%	60%
Column	60	45	45	150
Totals	100%	100%	100%	100%

Describing the Pattern in the Sample

- Column percentages = compare <u>across</u> columns
- In our sample, there are many more gun owners among the married (about 67% of all married people) than among those never married (25% of all never married)
- Previously married in the middle (33% of previously married have guns)

Note on Percentages

- In this class, we will always use column percentages
- A variable that can be considered independent (cause) should be in columns, dependent (outcome) – in rows
- If no independent or dependent variable, you can just pick which one will be in columns
- How do we recognize column vs row percentages?
 - Columns sum up to 100% → these are column percentages
 - Rows sum up to 100% → these are row percentages

The Idea of Chi-Square Test

- The test is based on calculating expected frequencies
- They show what the table would look like if H0 was true
- Then we compare observed (O) and expected (E) frequencies
- If too far from each other → reject H0

Observed vs Expected

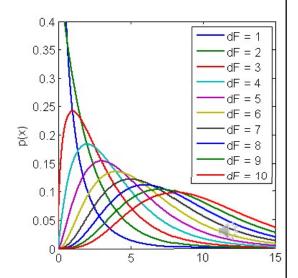
	C1 Never married	C2 Previously married	C3 Married	Row Totals (R _t)
Expected:	24	18	18	60
R1: Gun	40%	40%	40%	40%
Observed:	15	15	30	
Observeu.	25%	33.33%	66.67%	
Expected:	36	27	27	90
R2: No gun	60%	60%	60%	60%
Observed:	45	30	15	
Observeu.	75%	66.67%	33.33%	
Column	60	45	45	150 (T)
Totals (C _t)	100%	100%	100%	100%

Our Example Step-by-Step

- 1. State hypotheses:
- H0: Marital status and gun ownership are independent (unrelated)
- H1: Marital status is related to gun ownership (the two variables are not independent)
- H0: O_i = E_i
- H1: O_i ≠ E_i (always non-directional)
- 2. Select alpha: 0.05
- 3. Test statistic: Chi-square (always one-tailed)

Chi-Square Distribution

- Discovered by a German statistician Friedrich Robert Helmert in 1875
- Rediscovered and popularized by Karl Pearson



Our Example Step-by-Step

4. Formula: $\chi^2 = \Sigma((O-E)^2/E)$

O = "observed"; the actual number of cases in a cell

E = the number of cases "expected" in the cell if we assume H0 (no relationship, or independence);

 $E = C_t \times R_t / T$

 R_t = the total for the R^{th} row

C_t = the total for the Cth column

T = total number of cases in the table

	a 1	•		
Cal		lati	On	C
	Lu	ıaıı	VIII	3

Cell	E= C _t * R _t /T	0	О-Е	(O-E) ²	(O-E) ² /E
C ₁ R ₁	60x(60/150) = 60 x .4 = 24	15	15 - 24 = -9	81	81/24 = 3.375
C ₂ R ₁	45x(60/150) = 45 x .4 = 18	15	15 - 18 = -3	9	9/18 = 0.500
C ₃ R ₁	45x(60/150) = 45 x .4 = 18	30	30 - 18 = 12	144	144/18 = 8.000
C ₁ R ₂	60x(90/150) = 60 x .6 = 36	45	45 - 36 = 9	81	81/36 = 2.250
C ₂ R ₂	45x(90/150) = 45 x .6= 27	30	30 - 27 = 3	9	9/27 = 0.333
C ₃ R ₂	45x(90/150) = 45 x .6 = 27	15	15 - 27 = -12	144	144/27 = 5.333
Σ	150		0		$\chi^2 = 19.791$

$$\chi^2 = \Sigma((O-E)^2/E) = 19.791$$

Our Example Step-by-Step

- 5. Use table B5 to find critical value: df = (R-1)x(C-1) = (2-1)x(3-1) = 2 [R = number of rows, C = number of columns] and alpha= $.05 \rightarrow 5.99$
- 6. Compare computed value and critical value: 19.791 > 5.99
- 7. State your decision about H0: Reject H0
- 8. Conclusion: Based on our sample data, we are 95% certain that in the U.S. population, marital status is related to gun ownership.

Do not reject H₀

Reject H₀

In Other Words

 The departures from independence (O – E) are so large that chance would produce a chisquare value this large less than 5% of the time when randomly sampling from a population in which the two are independent

100

Cell	E= C _{t *} R _t /T	0	О-Е	(O-E) ²	(O-E) ² /E
C ₁ R ₁	60x(60/150) = 60 x .4 = 24	15	15 - 24 = -9	81	81/24 = 3.375
C ₂ R ₁	45x(60/150) = 45 x .4 = 18	15	15 - 18 = -3	9	9/18 = 0.500
C ₃ R ₁	45x(60/150) = 45 x .4 = 18	30	30 - 18 = 12	144	144/18 = 8.000
C ₁ R ₂	60x(90/150) = 60 x .6 = 36	45	45 - 36 = 9	81	81/36 = 2.250
C ₂ R ₂	45x(90/150) = 45 x .6= 27	30	30 - 27 = 3	9	9/27 = 0.333
C ₃ R ₂	45x(90/150) = 45 x .6 = 27	15	15 - 27 = -12	144	144/27 = 5.333

Focus on residuals larger than critical value of z

- for 90% confidence, 1.645
- for 95% confidence, 1.96
- for 99% confidence, 2.576

Post-Hoc Assessment: Residuals

- C1R1, C3R1, C1R2, C3R2 residuals>1.96
- Married people are particularly likely to own guns (67% of them do) as compared to the never married people (only 25% of them do)
- Previously married are not significantly different from the other two groups

Important Things to Remember

- Chi-square test helps us determine whether there is a relationship between two variables overall; can't say which categories specifically are different (overall test, like ANOVA!)
- Need to have enough data per cell for chisquare test: fewer than 20% of cells should have EXPECTED counts of <5

Chi-Square in Stata: Problem

- Question: Are the opinions about legalizing marijuana (grass) linked to people's level of education (degree)?
- H0: Opinions about legalizing marijuana and people's level of education are unrelated.
- H1: Opinions about legalizing marijuana are related to people's level of education.
- H0: O_i = E_i
- H1: O_i ≠ E_i

Variables and Percentages in Stata

- Command: tab grass degree, col chi
- grass = row variable, degree = column variable
- In Stata command:
 - first variable = row variable (use your "dependent" variable)
 - second variable = column variable (use your "independent" variable)
 - ask for column percentages → option col
 - If you wanted row percentages → option row

Chi-Square in Stata

tab grass degree, col chi

Key	1					
freque column per	centage					
SHOULD MARIJUANA BE MADE	LT HIGH S		HIGHEST DEG		graduate	Total
legal		277 47.43	51 53.13	110 48.46	,	586 47.49
NOT LEGAL	120 61.86		45 46.88	117 51.54	59 44.36	648 52.51
Total		584 100.00	96 100.00	227 100.00	133 100.00	1,234 100.00
Pe	earson chi2(4) = 11.64	152 Pr = 0	.020		4

- Chi-square = 11.645, p<.05
- We reject the null hypothesis of no relationship → 95% confident that opinions about legalizing marijuana are tied to level of education

Post-Hoc Assessment: Where Are the Differences?

- Analysis of residuals
- Need to install a user-written program in Stata (do once):

net install tab_chi,
from(http://fmwww.bc.edu/RePEc/bocode/t)

- Which cells have the largest differences in Observed – Expected?
- Focus on residuals larger than critical value of z
 - for 90% confidence, 1.645
 - for 95% confidence, 1.96
 - for 99% confidence, 2.576

Post-Hoc Assessment: Residuals tabchi grass degree, adj observed frequency expected frequency adjusted residual SHOULD MARIJUANA | RS HIGHEST DEGREE BE MADE | LEGAL | LT HIGH SCHOOL HIGH SCHOOL JUNIOR COLLEGE bachelor graduate _____ legal | 74 277 51 110 74 | 92.126 277.329 45.588 107.797 63.159 | -2.839 -0.038 1.152 0.324 1.993 | NOT LEGAL | 120 307 45 117 59 | | 101.874 306.671 50.412 119.203 69.841 | 2.839 0.038 -1.152 -0.324 1.993 Pearson chi2(4) = 11.6452 Pr = 0.0201

Conclusion

 Those with less than high school degree are particularly likely to oppose legalizing marijuana in the population, while those with graduate degrees are particularly likely to favor the legalization

